DECLARATION

ENVIRONNEMENTALE et SANITAIRE

CONFORME A LA NORME NF P 01-010

Entrevois leader EMS pour plancher d'étage en maison individuelle

Avril 2008

Cette déclaration est présentée selon le modèle de Fiche de Déclaration Environnementale et Sanitaire validé par l’AIMCC (FDE&S Version 2005)
Avertissement

KP1 a demandé à EVEA Conseil de l’assister dans la réalisation de Fiches de Déclaration Environnementales et Sanitaires (dites FDES).

KP1 et EVEA Conseil n’acceptent aucune responsabilité vis à vis de tout tiers à qui les résultats de l’étude auront été communiqués ou dans les mains desquels ils seraient parvenus, l’utilisation des résultats par leurs soins relevant de leur propre responsabilité.

Nous rappelons que les résultats de l’étude sont fondés seulement sur des faits, circonstances et hypothèses qui nous ont été soumis au cours de l’étude. Si ces faits, circonstances et hypothèses diffèrent, les résultats sont susceptibles de changer.

De plus il convient de considérer les résultats de l’étude dans leur ensemble, au regard des hypothèses, et non pas pris isolément.
INTRODUCTION .. 4

GUIDE DE LECTURE .. 5

1 CARACTERISATION DU PRODUIT SELON NF P 01-010 § 4.3 .. 6
 1.1 Définition de l’Unité Fonctionnelle (UF) ... 6
 1.2 Masses et données de base pour le calcul de l’unité fonctionnelle (UF) 6
 1.3 Caractéristiques techniques utiles non contenues dans la définition de l’unité fonctionnelle.. 7

2 DONNEES D’INVENTAIRE ET AUTRES DONNEES SELON NF P 01-010 § 5 ET COMMENTAIRES RELATIFS AUX EFFETS ENVIRONNEMENTAUX ET SANITAIRES DU PRODUIT SELON NF P 01-010 § 4.7.2 .. 8
 2.1 Consommations des ressources naturelles (NF P 01-010 § 5.1) 8
 2.2 Émissions dans l’air, l’eau et le sol (NF P 01-010 § 5.2) ... 13
 2.3 Production de déchets (NF P 01-010 § 5.3) .. 19

3 IMPACTS ENVIRONNEMENTAUX REPRESENTATIFS DES PRODUITS DE CONSTRUCTION SELON NF P 01-010 § 6 ... 21

4 CONTRIBUTION DU PRODUIT A L’EVALUATION DES RISQUES SANITAIRES ET DE LA QUALITE DE VIE A L’INTERIEUR DES BATIMENTS SELON NF P 01-010 § 7 ... 22
 4.1 Informations utiles à l’évaluation des risques sanitaires (NF P 01-010 § 7.2) 22
 4.2 Contribution du produit à la qualité de vie à l’intérieur des bâtiments (NF P 01-010 § 7.3) 23

5 AUTRES CONTRIBUTIONS DU PRODUIT NOTAMMENT PAR RAPPORT A DES PREOCCUPATIONS D’ECOGESTION DU BATIMENT, D’ECONOMIE ET DE POLITIQUE ENVIRONNEMENTALE GLOBALE ... 25
 5.1 Écogestion du bâtiment .. 25
 5.2 Préoccupation économique ... 25
 5.3 Politique environnementale globale .. 25

6 ANNEXE : CARACTERISATION DES DONNEES POUR LE CALCUL DE L’INVENTAIRE DE CYCLE DE VIE (ICV) ... 27
 6.1 Définition du système d’ACV (Analyse de Cycle de Vie) ... 27
 6.2 Sources de données .. 28
 6.3 Traçabilité .. 29
 6.4 Principales hypothèses ... 30
INTRODUCTION

Le cadre utilisé pour la présentation de la déclaration environnementale et sanitaire de l’Entrevois leader EMS pour plancher d’étage en maison individuelle est la Fiche de Déclaration Environnementale et Sanitaire élaborée par l’AIMCC (FDE&S version 2005).

Cette fiche constitue un cadre adapté à la présentation des caractéristiques environnementales et sanitaires des produits de construction conformément aux exigences de la norme NF P 01-010 et à la fourniture de commentaires et d’informations complémentaires utiles dans le respect de l’esprit de cette norme en matière de sincérité et de transparence (NF P 01-010 § 4.2).

Toute exploitation, totale ou partielle, des informations ainsi fournies devra au minimum être constamment accompagnée de la référence complète de la déclaration d’origine : « titre complet, date d’édition, adresse de l’émetteur » qui pourra remettre un exemplaire authentique.

Producteur des données (NF P 01-010 § 4).

Les informations contenues dans cette déclaration sont fournies sous la responsabilité de KP1 (Industriel) selon la norme NF P 01-010 § 4.6.

Contact :

Yuraiima BENOIT
Ingénieur matériaux

KP1
Quartier de la Grave
Route départementale 26
30131 Pujaut
France

Tél. : 04 90 15 25 91
E.mail : yu.benoit@kp1.fr
GUIDE DE LECTURE

Dans les tableaux du chapitre 2, dans un souci de simplification et de lisibilité, seules les valeurs supérieures à 10^-6 (0,000001) sont reportées. Il a été vérifié que les valeurs affichées dans ces tableaux participent à plus de 99,9% aux indicateurs d’impacts environnementaux du chapitre 3.

Les unités utilisées sont précisées devant chaque flux, elles sont :
- le kilogramme « kg »,
- le gramme « g »,
- le litre « l »,
- le kilowattheure « kWh »,
- le mégajoule « MJ » (106 joules = 0,28 kWh).
1 Caractérisation du produit selon NF P 01-010 § 4.3

1.1 Définition de l’Unité Fonctionnelle (UF)

Assurer le coffrage d’un plancher d’une surface de 0,672 m² (soit 2.075 kg) entre deux poutrelles pendant une anuité.

1.2 Masses et données de base pour le calcul de l’unité fonctionnelle (UF)

Un entrevou est un constituant destiné à rester tel quel dans le complexe dalle / faux plafond pendant toute la durée de vie de l’ouvrage. Par conséquent, sa Durée de Vie Typique (DVT) est égale à celle de l’ouvrage, par convention : 100 ans. **Cependant, sa fonction d’aide au coffrage n’est utilisée qu’au maximum 1 semaine, soit le temps maximum qui sépare la pose de l’entrevois à la coulée de la dalle.**

Ce postulat entraîne l’absence de flux identifiablles pendant la vie en œuvre de l’UF circonscrite à la fonction coffrage. De même, aucun flux n’a lieu lors de la mise en œuvre de l’entrevois.

Si la durée de vie prévue de l’entrevois est inférieure ou supérieure à 100 ans, les données contenues dans la déclaration devront être recalculées pour être adaptées à la durée de vie choisie (NF P 01-010 § 4.4.1).

Produit :

- Dimension d’un entrevois : 120 cm x 56 cm x 12 cm
- Poids : 2,075 kg soit 0.02075 kg pour l’UF

Emballages de distribution (nature et quantité) :

- 1 palette en bois contient 160 entrevois
- Adhésif : 0,000344 mL / UF (0.0344 mL pour toute la DVT)
- Polyéthylène (film) : 0.037 g / UF (3.7 g pour toute la DVT)
- Carton (coiffe de la palette en bois) : 0,009 g / UF (0.9 g pour toute la DVT)

Produits complémentaires (natures et quantités) pour la mise en œuvre :

Aucun produit complémentaire nécessaire pour la pose n’est inclus dans l’unité fonctionnelle décrite. Il n’y a donc pas de flux d’inventaire identifiablles pour la mise en œuvre de l’Unité Fonctionnelle.

Taux de chutes lors de la mise en œuvre et l’entretien :

Aucun taux de chute lors de la mise en œuvre n’est pris en compte. En effet, si la longueur de la dalle n’est pas un multiple de la longueur de l’entrevois, il est possible de couper un entrevois pour compléter. Par conséquent, l’entrevois est réutilisé. Par ailleurs, aucun entretien n’est nécessaire.

Justification des informations fournies :

Les données de production et de transport ont été fournies par les sites de production de KP1. Elles ont été revues ensuite par EVEA Conseil.
1.3 Caractéristiques techniques utiles non contenues dans la définition de l’unité fonctionnelle

Les entrevois Leader EMS permettent la réalisation de planchers associés aux poutrelles précontraintes KP1 de la gamme Leader et Performance (système sous Avis Technique).

Ces entrevois par le gain de poids qu’ils procurent, facilitent la mise en œuvre pour les entreprises de maçonnerie. Ils améliorent également l’étanchéité lors du coulage de la dalle de compression. De nombreux accessoires associés à ces entrevois (tymphs, tymphs réseaux, tymphs biais, suspentes, aéroVS) participent également à une mise en œuvre soignée.

Les caractéristiques géométriques et le matériau utilisé autorisent un stockage réduit à la fois chez le négociant et sur les chantiers.

La constitution modulaire de l’entrevois Leader EMS limite de manière drastique les chutes (déchets) lors de la mise en œuvre du plancher.
2 Données d’Inventaire et autres données selon NF P 01-010 § 5 et commentaires relatifs aux effets environnementaux et sanitaires du produit selon NF P 01-010 § 4.7.2

Les données d’inventaire de cycle de vie qui sont présentées ci-après ont été calculées pour l’unité fonctionnelle définie en 1.1 et 1.2

Un guide de lecture des tableaux est disponible page 5.

2.1 Consommations des ressources naturelles (NF P 01-010 § 5.1)

2.1.1 Consommation de ressources naturelles énergétiques et indicateurs énergétiques (NF P 01-010 § 5.1.1)

<table>
<thead>
<tr>
<th>Flux</th>
<th>Unités</th>
<th>Production</th>
<th>Transport</th>
<th>Mise en œuvre</th>
<th>Vie en œuvre</th>
<th>Fin de Vie</th>
<th>Total Cycle de Vie(^1) par anuité (^1)</th>
<th>pour toute la DVT (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation de ressources naturelles énergétiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bois</td>
<td>kg</td>
<td>1,77E-03</td>
<td>1,53E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,77E-03</td>
<td>1,77E-03</td>
<td>1,77E-01</td>
</tr>
<tr>
<td>Charbon</td>
<td>kg</td>
<td>1,77E-03</td>
<td>3,97E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,67E-05</td>
<td>1,83E-03</td>
<td>1,83E-01</td>
</tr>
<tr>
<td>Lignite</td>
<td>kg</td>
<td>2,41E-04</td>
<td>1,99E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>9,56E-06</td>
<td>2,70E-04</td>
<td>2,70E-02</td>
</tr>
<tr>
<td>Gaz naturel</td>
<td>kg</td>
<td>9,29E-03</td>
<td>1,85E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,25E-05</td>
<td>9,32E-03</td>
<td>9,32E-01</td>
</tr>
<tr>
<td>Pétrole</td>
<td>kg</td>
<td>2,08E-02</td>
<td>3,84E-04</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,85E-04</td>
<td>2,13E-02</td>
<td>2,13E+00</td>
</tr>
<tr>
<td>Uranium (U)</td>
<td>kg</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicateurs énergétiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Énergie Primaire Totale</td>
<td>MJ</td>
<td>1,81E+00</td>
<td>2,08E-02</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,04E-02</td>
<td>1,85E+00</td>
<td>1,85E+02</td>
</tr>
<tr>
<td>Énergie Renouvelable</td>
<td>MJ</td>
<td>3,41E-02</td>
<td>2,93E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,60E-05</td>
<td>3,41E-02</td>
<td>3,41E+00</td>
</tr>
<tr>
<td>Énergie Non Renouvelable</td>
<td>MJ</td>
<td>1,78E+00</td>
<td>2,08E-02</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,04E-02</td>
<td>1,81E+00</td>
<td>1,81E+02</td>
</tr>
<tr>
<td>Énergie Procédé</td>
<td>MJ</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Énergie Matière</td>
<td>MJ</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Electricité</td>
<td>kWh</td>
<td>4,65E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>4,65E-03</td>
<td>4,65E-03</td>
<td>4,65E+01</td>
</tr>
</tbody>
</table>

\(^1\) Les valeurs sont exprimées pour l’Unité Fonctionnelle c’est-à-dire pour une surface de 0.672 m\(^2\) et pour un an.

\(^2\) Les valeurs sont exprimées pour 0.672 m\(^2\) pour toute la durée de vie.

\(^3\) Du fait du choix d’affichage des seules valeurs supérieures à 10\(^{-6}\), pour certaines lignes, le « Total Cycle de Vie » peut être supérieur à la somme des valeurs affichées pour les différentes étapes (le « Total Cycle de Vie » ayant bien été effectué en considérant toutes les valeurs).

* La consommation d’électricité est déjà comptabilisée dans les flux énergétiques précédents (Énergie primaire totale, Énergie Renouvelable, …).
Commentaires relatifs à la consommation de ressources naturelles énergétiques et aux indicateurs énergétiques :

La principale ressource énergétique consommée est le pétrole, respectivement la plus utilisée pendant l’étape de production et notamment la fabrication des matières premières et, la phase transport.

L’énergie Procédé est à zéro durant tout le cycle de vie car l’énergie apportée pour le process est déjà comptabiliser en électricité. Par ailleurs, l'entrevois Leader EMS étant mis en décharge sans récupération énergétique, il n'y a donc pas d’égale Matter récupéré tout au long des différentes phases du cycle de vie du produit.

Environ 98% de l’énergie consommée est attribuable à l’étape de production.

Les indicateurs énergétiques doivent être utilisés avec précaution car ils additionnent des énergies d'origine différente qui n'ont pas les mêmes impacts environnementaux (Se référer de préférence aux flux élémentaires)

2.1.2 Consommation de ressources naturelles non énergétiques (NF P 01-010 § 5.1.2)

Un guide de lecture des tableaux est disponible page 5.
<table>
<thead>
<tr>
<th>Flux</th>
<th>Unités</th>
<th>Production</th>
<th>Transport</th>
<th>Mise en œuvre</th>
<th>Vie en Œuvre</th>
<th>Fin de Vie</th>
<th>Total Cycle de Vie pour toute la DVT</th>
<th>pour toute la DVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaolin (Al2O3, 2SiO2,2H2O)</td>
<td>kg</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>5,61E-06</td>
<td></td>
</tr>
<tr>
<td>Magnésium (Mg)</td>
<td>kg</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>3,40E-05</td>
<td></td>
</tr>
<tr>
<td>Manganèse (Mn)</td>
<td>kg</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>3,75E-05</td>
<td></td>
</tr>
<tr>
<td>Mercure (Hg)</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>3,80E-06</td>
<td>3,80E-04</td>
</tr>
<tr>
<td>Molybdène (Mo)</td>
<td>kg</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>3,75E-05</td>
<td></td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>kg</td>
<td>3,13E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>3,80E-06</td>
<td>3,80E-04</td>
</tr>
<tr>
<td>Or (Au)</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
</tr>
<tr>
<td>Palladium (Pd)</td>
<td>kg</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>5,75E-06</td>
<td>5,75E-04</td>
</tr>
<tr>
<td>Platine (Pt)</td>
<td>kg</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>5,13E-05</td>
<td></td>
</tr>
<tr>
<td>Plomb (Pb)</td>
<td>kg</td>
<td>4,38E-06</td>
<td>1,08E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>5,75E-06</td>
<td>5,75E-04</td>
</tr>
<tr>
<td>Chlorure de Potassium (KCl)</td>
<td>kg</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>4,31E-05</td>
<td></td>
</tr>
<tr>
<td>Rhodium (Rh)</td>
<td>kg</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>5,13E-05</td>
<td></td>
</tr>
<tr>
<td>Rutile (TiO2)</td>
<td>kg</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>2,69E-06</td>
<td>2,69E-04</td>
</tr>
<tr>
<td>Sable</td>
<td>kg</td>
<td>2,69E-06</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>2,69E-06</td>
<td>2,69E-04</td>
</tr>
<tr>
<td>Silice (SiO2)</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
</tr>
<tr>
<td>Soufre (S)</td>
<td>kg</td>
<td>1,28E-06</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>1,29E-06</td>
<td>1,29E-04</td>
</tr>
<tr>
<td>Sulfate de Baryum (BaSO4) (Barite)</td>
<td>kg</td>
<td>5,32E-06</td>
<td>1,79E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>7,76E-06</td>
<td>7,76E-04</td>
</tr>
<tr>
<td>Titane (Ti)</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Tungstène (W)</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Vanadium (V)</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>8,59E-05</td>
<td></td>
</tr>
<tr>
<td>Zirconium (Zr)</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Matières premières végétales non spécifiées avant</td>
<td>kg</td>
<td>5,26E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>5,26E-05</td>
<td>5,26E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matières premières animales non spécifiées avant</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produits intermédiaires non remontés (total)</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matières premières non spécifié avant (total)</td>
<td>kg</td>
<td>1,88E-04</td>
<td>2,88E-05</td>
<td>0,00E+00</td>
<td>1,70E-05</td>
<td>2,34E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commentaires relatifs à la consommation de ressources naturelles non énergétiques :

1,05 kg de ressources naturelles non énergétiques ont été consommées (10,5 g si l’on se ramène à une anuité). La principale ressource utilisée est le gravier à près de 93 % en masse. Cette consommation provient de l’extraction des matières premières énergétiques (pétrole, uranium, …) pour alimenter le process en énergie mais aussi produire le polypropylène.
2.1.3 Consommation d’eau (prélèvements) (\textit{NF P 01-010 § 5.1.3})

Un guide de lecture des tableaux est disponible page 5.

<table>
<thead>
<tr>
<th>Flux</th>
<th>Unités</th>
<th>Production</th>
<th>Transport</th>
<th>Mise en œuvre</th>
<th>Vie en Œuvre</th>
<th>Fin de Vie</th>
<th>Total Cycle de Vie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eau : Lac</td>
<td>litre</td>
<td>8,51E-05</td>
<td>1,44E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>5,69E-05</td>
<td>1,56E-04 1,56E-02</td>
</tr>
<tr>
<td>Eau : Mer</td>
<td>litre</td>
<td>2,00E-02</td>
<td>4,85E-04</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>2,01E-04</td>
<td>2,06E-02 2,06E+00</td>
</tr>
<tr>
<td>Eau : Nappe Phréatique</td>
<td>litre</td>
<td>3,08E-03</td>
<td>2,92E-04</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>2,12E-04</td>
<td>3,58E-03 3,58E-01</td>
</tr>
<tr>
<td>Eau : Origine non Spécifiée</td>
<td>litre</td>
<td>6,23E-02</td>
<td>3,30E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>5,78E-03</td>
<td>7,13E-02 7,13E+00</td>
</tr>
<tr>
<td>Eau : Rivière</td>
<td>litre</td>
<td>6,01E-02</td>
<td>1,01E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>6,88E-04</td>
<td>6,18E-02 6,18E+00</td>
</tr>
<tr>
<td>Eau Potable (réseau)</td>
<td>litre</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Eau Consommée (total)</td>
<td>litre</td>
<td>1,45E-01</td>
<td>5,11E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>6,94E-03</td>
<td>1,58E-01 1,58E+01</td>
</tr>
</tbody>
</table>

\textbf{Commentaires relatifs à la consommation d’eau (prélèvements) :}

Sur les 15,8 litres d’eaux prélevés, 92\% est consommé en production pour alimenter en électricité le process de fabrication des entrevois.
Il est à noter que l’eau utilisée circule en circuit fermé. Par conséquent, étant réutilisé à plusieurs reprises, elle n’est pas comptabilisé.

2.1.4 Consommation d’énergie et de matière récupérées (\textit{NF P 01-010 § 5.1.4})

Un guide de lecture des tableaux est disponible page 5.

<table>
<thead>
<tr>
<th>Flux</th>
<th>Unités</th>
<th>Production</th>
<th>Transport</th>
<th>Mise en œuvre</th>
<th>Vie en Œuvre</th>
<th>Fin de Vie</th>
<th>Total Cycle de Vie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Énergie Récupérée</td>
<td>MJ</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Matière Récupérée : Total</td>
<td>kg</td>
<td>9,40E-04</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>9,40E-04 9,40E-02</td>
</tr>
<tr>
<td>Matière Récupérée : Acier</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Matière Récupérée : Aluminium</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Matière Récupérée : Métal (non spécifié)</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Matière Récupérée : Papier-Carton</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Matière Récupérée : Plastique</td>
<td>kg</td>
<td>9,40E-04</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>9,40E-04 9,40E-02</td>
</tr>
<tr>
<td>Matière Récupérée : Calcium</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Matière Récupérée : Biomasse</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Flux</td>
<td>Unités</td>
<td>Production</td>
<td>Transport</td>
<td>Mise en œuvre</td>
<td>Vie en Œuvre</td>
<td>Fin de Vie</td>
<td>Total Cycle de Vie</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>par annuité</td>
<td>pour touta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>la DVT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matière Récupérée : Minérale</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Matière Récupérée : Non spécifiée</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
</tbody>
</table>

Commentaires relatifs à la consommation d’énergie et de matière récupérées :

La production d’un entrevou engendre 0,094 kg de matière provenant des déchets d’injection et des rebuts. Cependant, cette matière est broyée et, les copeaux obtenus sont réutilisés pour la fabrication de tympans (produit annexe à l’entrevoeu).

Pour informations, il faut les chutes de 2,4 entrevou EMS pour obtenir un tympan (masse de 225 grammes).
2.2 Émissions dans l’air, l’eau et le sol (NF P 01-010 § 5.2)

2.2.1 Émissions dans l’air (NF P 01-010 § 5.2.1)

Un guide de lecture des tableaux est disponible page 5.

<table>
<thead>
<tr>
<th>Flux</th>
<th>Unité</th>
<th>Production</th>
<th>Transport</th>
<th>Mise en œuvre</th>
<th>Vie en œuvre</th>
<th>Fin de Vie</th>
<th>Total Cycle de Vie</th>
<th>par annuité</th>
<th>pour toute la DVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbures (non spécifiés)</td>
<td>g</td>
<td>DÉJÀ comptabilisé Hydrocarbures (non spécifiés, excepté méthane)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocarbures (non spécifiés, excepté méthane)</td>
<td>g</td>
<td>9,31E-04</td>
<td>1,35E-04</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>5,88E-05</td>
<td>1,12E-03</td>
<td>1,12E-01</td>
<td></td>
</tr>
<tr>
<td>HAP non spécifiés (Hydrocarbures Aromatiques Polycycliques)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Méthane (CH4)</td>
<td>g</td>
<td>1,33E-01</td>
<td>1,11E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>5,16E-03</td>
<td>1,39E-01</td>
<td>1,39E+01</td>
<td></td>
</tr>
<tr>
<td>Composé organiques volatils (ex : acétone, acétate,...)</td>
<td>g</td>
<td>5,71E-02</td>
<td>2,02E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>8,75E-04</td>
<td>6,00E-02</td>
<td>6,00E+00</td>
<td></td>
</tr>
<tr>
<td>Dioxyde de Carbone (CO2)</td>
<td>g</td>
<td>4,68E+01</td>
<td>1,19E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>8,18E-01</td>
<td>4,88E+01</td>
<td>4,88E+03</td>
<td></td>
</tr>
<tr>
<td>Monoxyde de Carbone (CO)</td>
<td>g</td>
<td>2,78E-02</td>
<td>3,39E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,40E-04</td>
<td>3,14E-02</td>
<td>3,14E+00</td>
<td></td>
</tr>
<tr>
<td>Oxydes d’Azote (NOx et NO2)</td>
<td>g</td>
<td>2,32E-01</td>
<td>9,89E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>3,87E-03</td>
<td>2,46E-01</td>
<td>2,46E+01</td>
<td></td>
</tr>
<tr>
<td>Protoxyde d’Azote (N2O)</td>
<td>g</td>
<td>2,12E-04</td>
<td>3,90E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,58E-05</td>
<td>2,67E-04</td>
<td>2,67E-02</td>
<td></td>
</tr>
<tr>
<td>Ammoniaque (NH3)</td>
<td>g</td>
<td>2,50E-04</td>
<td>1,46E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>9,69E-06</td>
<td>2,74E-04</td>
<td>2,74E-02</td>
<td></td>
</tr>
<tr>
<td>Poussières (non spécifiées)</td>
<td>g</td>
<td>3,73E-02</td>
<td>1,65E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>6,15E-04</td>
<td>3,96E-02</td>
<td>3,96E+00</td>
<td></td>
</tr>
<tr>
<td>Oxydes de Souffre (SOx et SO2)</td>
<td>g</td>
<td>5,49E-01</td>
<td>3,68E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,52E-03</td>
<td>5,55E-01</td>
<td>5,55E+01</td>
<td></td>
</tr>
<tr>
<td>Hydrogène Sulfureux (H2S)</td>
<td>g</td>
<td>3,82E-05</td>
<td>1,03E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>3,97E-05</td>
<td>3,97E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanure et ses composés (CN)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
<td></td>
<td>9,17E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composés chlorés organiques (en Cl)</td>
<td>g</td>
<td>1,99E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>2,03E-06</td>
<td>2,03E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acide Chlorhydrique (HCl)</td>
<td>g</td>
<td>7,89E-04</td>
<td>7,27E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>2,07E-05</td>
<td>8,17E-04</td>
<td>8,17E-02</td>
<td></td>
</tr>
<tr>
<td>Composés chlorés inorganiques (en Cl)</td>
<td>g</td>
<td>9,07E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>9,61E-06</td>
<td>9,61E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composés fluorés organiques (en F)</td>
<td>g</td>
<td>6,90E-06</td>
<td>2,47E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>9,97E-06</td>
<td>9,97E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composés fluorés inorganiques (en F)</td>
<td>g</td>
<td>5,56E-05</td>
<td>1,53E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,61E-06</td>
<td>5,87E-05</td>
<td>5,87E-03</td>
<td></td>
</tr>
<tr>
<td>Composés halogénés (non spécifiés)</td>
<td>g</td>
<td>2,15E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>2,32E-06</td>
<td>2,32E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium et ses composés (en Cd)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
<td>2,63E-05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome et ses composés (en Cr)</td>
<td>g</td>
<td>2,92E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>3,53E-06</td>
<td>3,53E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flux</td>
<td>Unité</td>
<td>Production</td>
<td>Transport</td>
<td>Mise en œuvre</td>
<td>Vie en Œuvre</td>
<td>Fin de Vie</td>
<td>Total Cycle de Vie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>par annuité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt et ses composés (en Co)</td>
<td>g</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>2,48E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre et ses composés (en Cu)</td>
<td>g</td>
<td>3,06E-06</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>4,03E-06</td>
<td>4,03E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etain et ses composés (en Sn)</td>
<td>g</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>9,56E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganèse et ses composés (en Mn)</td>
<td>g</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>6,74E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure et ses composés (en Hg)</td>
<td>g</td>
<td>8,23E-06</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>8,29E-06</td>
<td>8,29E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel et ses composés (en Ni)</td>
<td>g</td>
<td>2,65E-06</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>3,21E-06</td>
<td>3,21E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plomb et ses composés (en Pb)</td>
<td>g</td>
<td>3,26E-06</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>4,05E-06</td>
<td>4,05E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sélénium et ses composés (en Se)</td>
<td>g</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>1,90E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tellure et ses composés (en Te)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc et ses composés (en Zn)</td>
<td>g</td>
<td>7,90E-06</td>
<td>1,82E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,03E-05</td>
<td>1,03E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium et ses composés (en V)</td>
<td>g</td>
<td>4,53E-06</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>5,19E-06</td>
<td>5,19E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicium et ses composés (en Si)</td>
<td>g</td>
<td>3,20E-05</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>3,31E-05</td>
<td>3,31E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimoine et ses composés (Sb)</td>
<td>g</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>6,34E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic et ses composés (As)</td>
<td>g</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>4,88E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td>g</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diosulfide de carbone (CS2)</td>
<td>g</td>
<td>1,47E-05</td>
<td>2,12E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,77E-05</td>
<td>1,77E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eau (Vapeur)</td>
<td>g</td>
<td>2,19E-04</td>
<td>1,85E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>7,22E-06</td>
<td>2,45E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium (He)</td>
<td>g</td>
<td>6,70E-06</td>
<td>1,18E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>8,84E-06</td>
<td>8,84E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogène (H)</td>
<td>g</td>
<td>1,63E-03</td>
<td>1,56E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,23E-06</td>
<td>1,64E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate (NO3-)</td>
<td>g</td>
<td></td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone (O3)</td>
<td>g</td>
<td>4,98E-05</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>5,12E-05</td>
<td>5,12E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium et ses composés (en Na)</td>
<td>g</td>
<td>6,36E-06</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>7,17E-06</td>
<td>7,17E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soufre et ses composés (en S)</td>
<td>g</td>
<td>4,23E-05</td>
<td>2,54E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>4,58E-05</td>
<td>4,58E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bore et ses composés (B)</td>
<td>g</td>
<td>8,98E-06</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>9,87E-06</td>
<td>9,87E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium et ses composés (Al)</td>
<td>g</td>
<td>1,48E-04</td>
<td>1,24E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>4,91E-06</td>
<td>1,66E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Métaux (non spécifiés)</td>
<td>g</td>
<td>6,25E-05</td>
<td>1,00E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>6,41E-05</td>
<td>6,41E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matières organiques (non spécifiés)</td>
<td>g</td>
<td>3,93E-04</td>
<td>2,56E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>6,61E-06</td>
<td>4,25E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amiante</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium et ses composés (en Li)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azote et ses composés (hors NOx, NO2, N2O, NH3, NO3-)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>3,83E-05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphore et ses composés (en P)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>5,01E-05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Remarque : Quand une substance est composée à la fois d’atome de chlore et de fluor (cas des CFC et des HCFC), elle est comptabilisée en composé chloré pour les CFC et en composé fluoré pour les HCFC.

NOTE : Concernant les émissions radioactives, ce tableau devra être complété dès que la transposition de la directive européenne Euratom sur les émissions radioactives sera publiée.

Commentaires relatifs aux émissions dans l’air :

Les émissions dans l’air sont majoritairement du dioxyde de carbone (98 %). Les 4,88 kg de CO₂ émis sur toute la DVT sont principalement, à plus de 96 % émis lors de l’étape de production, 2% étant liés au transport.

Concernant les 96 % liés à l’étape de production, le site même de fabrication représente moins de 5 % de ces émissions, la fabrication du polypropylène étant à l’origine de ces émissions.

Une partie des émissions d’oxydes d’azote et d’une façon générale les émissions atmosphériques associées aux étapes de distribution et de fin de vie sont uniquement dues à la production et à la combustion du gasoil consommé pour le transport.

2.2.2 Émissions dans l’eau (NF P 01-010 § 5.2.2)

Un guide de lecture des tableaux est disponible page 5.
<table>
<thead>
<tr>
<th>Flux</th>
<th>Unité</th>
<th>Production</th>
<th>Transport</th>
<th>Mise en œuvre</th>
<th>Vie en Œuvre</th>
<th>Fin de Vie</th>
<th>Total Cycle de Vie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>par anciété</td>
<td>pour toute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composés fluorés inorganiques (en F)</td>
<td>g</td>
<td>1,81E-04</td>
<td>8,85E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>2,51E-04</td>
<td>4,41E-04 4,41E-02</td>
</tr>
<tr>
<td>Composés fluorés non spécifiés (en F)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Composés chlorés organiques (en Cl)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>6,97E-03</td>
<td>1,14E-01</td>
<td>1,14E+01</td>
</tr>
<tr>
<td>Composés chlorés inorganiques (en Cl)</td>
<td>g</td>
<td>8,94E-02</td>
<td>1,76E-02</td>
<td>0,00E+00</td>
<td>6,97E-03</td>
<td>1,14E-01</td>
<td>1,14E+01</td>
</tr>
<tr>
<td>Composés chlorés non spécifiés (en Cl)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>HAP (non spécifiés)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>6,85E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Métaux (non spécifiés)</td>
<td>g</td>
<td>2,09E-02</td>
<td>1,17E-03</td>
<td>0,00E+00</td>
<td>1,30E-03</td>
<td>2,34E-02</td>
<td>2,34E+00</td>
</tr>
<tr>
<td>Aluminium et ses composés (en Al)</td>
<td>g</td>
<td>4,42E-03</td>
<td>1,06E-04</td>
<td>0,00E+00</td>
<td>3,49E-03</td>
<td>8,01E-03</td>
<td>8,01E-01</td>
</tr>
<tr>
<td>Arsenic et ses composés (en As)</td>
<td>g</td>
<td>4,53E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>5,18E-06</td>
<td>5,18E-04</td>
<td></td>
</tr>
<tr>
<td>Cadmium et ses composés (en Cd)</td>
<td>g</td>
<td>2,08E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,20E-06</td>
<td>3,56E-06</td>
<td>3,56E-04</td>
</tr>
<tr>
<td>Chrome et ses composés (en Cr)</td>
<td>g</td>
<td>7,53E-05</td>
<td>5,76E-06</td>
<td>0,00E+00</td>
<td>3,16E-06</td>
<td>8,42E-05</td>
<td>8,42E-03</td>
</tr>
<tr>
<td>Cuivre et ses composés (en Cu)</td>
<td>g</td>
<td>1,58E-04</td>
<td>2,37E-06</td>
<td>0,00E+00</td>
<td>7,16E-04</td>
<td>8,76E-04</td>
<td>8,76E-02</td>
</tr>
<tr>
<td>Etain et ses composés (en Sn)</td>
<td>g</td>
<td>9,13E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>9,28E-06</td>
<td>9,28E-04</td>
<td></td>
</tr>
<tr>
<td>Fer et ses composés (en Fe)</td>
<td>g</td>
<td>1,52E-03</td>
<td>9,60E-05</td>
<td>0,00E+00</td>
<td>1,91E-03</td>
<td>3,52E-03</td>
<td>3,52E-01</td>
</tr>
<tr>
<td>Mercure et ses composés (en Hg)</td>
<td>g</td>
<td>1,04E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,96E-06</td>
<td>1,96E-04</td>
<td></td>
</tr>
<tr>
<td>Nickel et ses composés (en Ni)</td>
<td>g</td>
<td>5,55E-05</td>
<td>5,38E-06</td>
<td>0,00E+00</td>
<td>2,07E-05</td>
<td>8,16E-05</td>
<td>8,16E-03</td>
</tr>
<tr>
<td>Plomb et ses composés (en Pb)</td>
<td>g</td>
<td>4,08E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>3,94E-04</td>
<td>4,36E-04</td>
<td>4,36E-02</td>
</tr>
<tr>
<td>Zinc et ses composés (en Zn)</td>
<td>g</td>
<td>2,86E-04</td>
<td>6,00E-05</td>
<td>0,00E+00</td>
<td>4,87E-03</td>
<td>5,22E-03</td>
<td>5,22E-01</td>
</tr>
<tr>
<td>Eau rejetée</td>
<td>l</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
</tr>
</tbody>
</table>

Composés organiques dissous non spécifiés	g	1,68E-04	2,65E-06	0,00E+00	1,05E-06	1,72E-04	1,72E-02
Composés inorganiques dissous non spécifiés	g	1,40E-03	8,65E-05	0,00E+00	3,96E-05	1,52E-03	1,52E-01
Métaux alcalfins (Na+, K+)	g	4,19E-02	8,68E-03	0,00E+00	4,42E-03	5,50E-02	5,50E+00
Acide (H+)	g	1,47E-03	1,01E-04	0,00E+00	4,10E-05	1,61E-03	1,61E-01
Acide gras (non spécifiés)	g	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Alcool (non spécifié)	g	1,95E-02	5,96E-04	0,00E+00	2,13E-02	4,15E-02	4,15E+00
Bore et ses composés (en B)	g	2,81E-05	1,56E-06	0,00E+00	3,05E-05	3,05E-03	
Métaux alcino-terreux (Be2+, Mg2+, Ca2+, Sr2+, ...)	g	1,04E-02	1,44E-03	0,00E+00	7,82E-03	1,97E-02	1,97E+00
Carbonates (CO3−−)	g	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Carbone Organique Dissoisse (COD)	g	1,30E-02	1,67E-03	0,00E+00	4,83E-03	1,95E-02	1,95E+00
Commentaires sur les émissions dans l’eau :

L’origine des rejets dans l’eau liés aux cycles de l’entrevoirs Leader EMS réside dans la fin de vie du produit. En effet, sa mise en décharge représente un peu plus de 92% des émissions dans l’eau.

2.2.3 Émissions dans le sol (NF P 01-010 § 5.2.3)

Un guide de lecture des tableaux est disponible page 5.

<table>
<thead>
<tr>
<th>Flux</th>
<th>Unité</th>
<th>Production</th>
<th>Transport</th>
<th>Mise en œuvre</th>
<th>Vie en Œuvre</th>
<th>Fin de Vie</th>
<th>Total Cycle de Vie</th>
<th>par anuité</th>
<th>pour toute la DVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbone Organique Total (COT)</td>
<td>g</td>
<td>1,30E-02</td>
<td>1,67E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>4,86E-03</td>
<td>1,95E-02</td>
<td>1,95E+00</td>
<td></td>
</tr>
<tr>
<td>Cobalt et ses composés (en Co)</td>
<td>g</td>
<td>8,66E-06</td>
<td></td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td>9,33E-06</td>
<td>9,33E+04</td>
<td></td>
</tr>
<tr>
<td>COV (Composés Organiques Volatils)</td>
<td>g</td>
<td>2,84E-05</td>
<td>8,21E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>3,44E-06</td>
<td>4,01E-05</td>
<td>4,01E-03</td>
<td></td>
</tr>
<tr>
<td>Composés halogénés non spécifiés (hors Cl et F)</td>
<td>g</td>
<td>1,53E-04</td>
<td>1,91E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,73E-04</td>
<td>3,45E-04</td>
<td>3,45E-02</td>
<td></td>
</tr>
<tr>
<td>Matière Dissoute (non spécifiée)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
</tr>
<tr>
<td>Soufre et ses composés (en S)</td>
<td>g</td>
<td>2,40E-04</td>
<td>8,40E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>2,74E-05</td>
<td>3,51E-04</td>
<td>3,51E-02</td>
<td></td>
</tr>
</tbody>
</table>

KP1 – Entrevoirs Leader
Avril 2008
17/30
<table>
<thead>
<tr>
<th>Flux</th>
<th>Unités</th>
<th>Production</th>
<th>Transport</th>
<th>Mise en œuvre</th>
<th>Vie en Œuvre</th>
<th>Fin de Vie</th>
<th>Total Cycle de Vie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium (Al)</td>
<td>g</td>
<td>3,46E-05</td>
<td>1,05E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>3,89E-06</td>
<td>4,90E-05</td>
</tr>
<tr>
<td>Bore (B)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td></td>
<td></td>
<td>8,35E-05</td>
<td>8,35E-05</td>
</tr>
<tr>
<td>Carbone (C)</td>
<td>g</td>
<td>1,00E-04</td>
<td>3,18E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,17E-05</td>
<td>1,44E-04</td>
</tr>
<tr>
<td>Hydrocarbure (non spéciifiés)</td>
<td>g</td>
<td>4,10E-03</td>
<td>1,57E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>4,97E-04</td>
<td>6,16E-03</td>
</tr>
<tr>
<td>Ions halogénés</td>
<td>g</td>
<td>5,89E-03</td>
<td>1,92E-03</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>4,78E-04</td>
<td>8,29E-03</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>g</td>
<td>3,01E-05</td>
<td>8,42E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>3,11E-06</td>
<td>4,17E-05</td>
</tr>
<tr>
<td>Phosphore (P)</td>
<td>g</td>
<td>3,15E-06</td>
<td></td>
<td>0,00E+00</td>
<td></td>
<td>3,88E-06</td>
<td>3,88E-04</td>
</tr>
<tr>
<td>Silicium (Si)</td>
<td>g</td>
<td>1,69E-05</td>
<td>1,18E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,85E-05</td>
<td>1,85E-03</td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td>g</td>
<td>7,97E-05</td>
<td>2,32E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>8,55E-06</td>
<td>1,12E-04</td>
</tr>
<tr>
<td>Soufre (S)</td>
<td>g</td>
<td>2,03E-05</td>
<td>6,32E-06</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>2,33E-06</td>
<td>2,89E-05</td>
</tr>
<tr>
<td>Composés chlorés (Cl)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Composés fluorés (F)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Composés bromés (Br)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Cyanure (CN-)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>Matières organiques (non spéciifiés)</td>
<td>g</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
</tbody>
</table>

[1] Biocides : par exemples, pesticides, herbicides, fongicides, insecticides, bactéricides, etc.

[2] L’appellation métaux lourds est une appellation courante qui n’a ni fondement scientifique, ni application juridique. Il a été choisi ici que les métaux lourds étaient tous les éléments métalliques à partir de la quatrième période du tableau périodique des éléments.

Commentaires sur les émissions dans le sol :

Le cycle de vie des entrevois Leader EMS n’engendre pas d’émission dans le sol qui lui soit directement imputable. Les rejets comptabilisés sont des rejets indirects. Ils proviennent d’étapes en amont et en aval telles que la production d’électricité, le raffinage de carburant pour le transport, etc.
2.3 Production de déchets (*NF P 01-010 § 5.3*)

2.3.1 Déchets valorisés (*NF P 01-010 § 5.3*)

Un guide de lecture des tableaux est disponible page 5.

<table>
<thead>
<tr>
<th>Flux</th>
<th>Unités</th>
<th>Production</th>
<th>Transport</th>
<th>Mise en œuvre</th>
<th>Vie en Œuvre</th>
<th>Fin de Vie</th>
<th>Total Cycle de Vie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie Récupérée</td>
<td>MJ</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Energie Récupérée : Total</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Energie Récupérée : Acier</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Energie Récupérée : Aluminium</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Energie Récupérée : Métal (non spécifié)</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Energie Récupérée : Papier-Carton</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Energie Récupérée : Plastique</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Energie Récupérée : Calcin</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Energie Récupérée : Biomasse</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Energie Récupérée: Minérale</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
<tr>
<td>Energie Récupérée : Non spécifiée</td>
<td>kg</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00 0,00E+00</td>
</tr>
</tbody>
</table>

2.3.2 Déchets éliminés (*NF P 01-010 § 5.3*)

Un guide de lecture des tableaux est disponible page 5.

<table>
<thead>
<tr>
<th>Flux</th>
<th>Unités</th>
<th>Production</th>
<th>Transport</th>
<th>Mise en œuvre</th>
<th>Vie en Œuvre</th>
<th>Fin de Vie</th>
<th>Total Cycle de Vie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déchets dangereux</td>
<td>kg</td>
<td>2,30E-04</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>2,30E-04</td>
<td>2,30E-02</td>
</tr>
<tr>
<td>Déchets non dangereux</td>
<td>kg</td>
<td>2,28E-05</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>2,05E-02</td>
<td>2,05E-02</td>
<td>2,05E+00</td>
</tr>
<tr>
<td>Déchets inertes</td>
<td>kg</td>
<td>4,79E-04</td>
<td>1,06E-04</td>
<td>0,00E+00</td>
<td>5,30E-05</td>
<td>6,38E-04</td>
<td>6,38E-02</td>
</tr>
<tr>
<td>Déchets radioactifs</td>
<td>kg</td>
<td>1,59E-06</td>
<td>0,00E+00</td>
<td>1,61E-06</td>
<td>1,61E-04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commentaires relatifs à la production et aux modalités de gestion des déchets

Les déchets radioactifs listés dans le tableau ci-dessus ont pour origine le processus de production d’électricité en centrales nucléaires.
2,05 kg de déchets non dangereux sont produits tout au long du cycle de vie de l’entrevous. Cette valeur correspond en grande partie à la mise en décharge de l’entrevous dans sa totalité (rappel : un entrevous pèse 2,075 kg).
3 Impacts environnementaux représentatifs des produits de construction selon NF P 01-010 § 6

Tous ces impacts sont renseignés ou calculés conformément aux indications du § 6.1 de la norme NF P 01-010, à partir des données du § 2 et pour l’unité fonctionnelle de référence par anuité définie au § 1.1 et 1.2 de la présente déclaration, ainsi que pour l’unité fonctionnelle rapportée à toute la DVT (Durée de Vie Typique).

<table>
<thead>
<tr>
<th>N°</th>
<th>Impact environnemental</th>
<th>Valeur de l'indicateur pour l’UF par anuité (1)</th>
<th>Valeur de l’indicateur par UF pour toute la DVT (2)</th>
<th>Valeur de l’indicateur pour 1 mL par anuité (3)</th>
<th>Valeur de l’indicateur par mL pour toute la DVT (4)</th>
<th>Unité</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Consommation de ressources énergétiques</td>
<td>1,85E+00</td>
<td>1,85E+02</td>
<td>1,54E+00</td>
<td>1,54E+02</td>
<td>MJ</td>
</tr>
<tr>
<td></td>
<td>Énergie primaire totale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Énergie renouvelable</td>
<td>3,42E-02</td>
<td>3,42E+00</td>
<td>2,85E-02</td>
<td>2,85E+00</td>
<td>MJ</td>
</tr>
<tr>
<td></td>
<td>Énergie non renouvelable</td>
<td>1,81E+00</td>
<td>1,81E+02</td>
<td>1,51E+00</td>
<td>1,51E+02</td>
<td>MJ</td>
</tr>
<tr>
<td>2</td>
<td>Consommation de ressources non énergétiques</td>
<td>7,46E-04</td>
<td>7,46E-02</td>
<td>6,22E-04</td>
<td>6,22E-02</td>
<td>kg eq antimoine (Sb)</td>
</tr>
<tr>
<td>3</td>
<td>Consommation de l’eau</td>
<td>1,58E-01</td>
<td>1,58E+01</td>
<td>1,32E-01</td>
<td>1,32E+01</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Déchets solides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Déchets valorisés (total)</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>Déchets éliminés :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Déchets dangereux</td>
<td>2,30E-04</td>
<td>2,30E-02</td>
<td>1,92E-04</td>
<td>1,92E-02</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>Déchets non dangereux</td>
<td>2,06E-02</td>
<td>2,06E+00</td>
<td>1,72E-02</td>
<td>1,72E+00</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>Déchets inertes</td>
<td>6,37E-04</td>
<td>6,37E-02</td>
<td>5,31E-04</td>
<td>5,31E-02</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>Déchets radioactifs</td>
<td>1,61E-06</td>
<td>1,61E-04</td>
<td>1,34E-06</td>
<td>1,34E-04</td>
<td>kg</td>
</tr>
<tr>
<td>5</td>
<td>Changement climatique</td>
<td>4,72E-02</td>
<td>4,72E+00</td>
<td>3,93E-02</td>
<td>3,93E+00</td>
<td>kg eq CO2</td>
</tr>
<tr>
<td>6</td>
<td>Acidification atmosphérique</td>
<td>2,79E-04</td>
<td>2,79E-02</td>
<td>2,33E-04</td>
<td>2,33E-02</td>
<td>kg eq SO2</td>
</tr>
<tr>
<td>7</td>
<td>Pollution de l’air</td>
<td>3,56E+00</td>
<td>3,56E+02</td>
<td>2,97E+00</td>
<td>2,97E+02</td>
<td>m3</td>
</tr>
<tr>
<td>8</td>
<td>Pollution de l’eau</td>
<td>1,53E+00</td>
<td>1,53E+02</td>
<td>1,28E+00</td>
<td>1,28E+02</td>
<td>m3</td>
</tr>
<tr>
<td>9</td>
<td>Destruction de la couche d’ozone stratosphérique</td>
<td>1,53E-12</td>
<td>1,53E-10</td>
<td>1,28E-12</td>
<td>1,28E-10</td>
<td>kg CFC eq R11</td>
</tr>
<tr>
<td>10</td>
<td>Formation d’ozone photochimique</td>
<td>4,50E-07</td>
<td>4,50E-05</td>
<td>3,75E-07</td>
<td>3,75E-05</td>
<td>kg eq éthylène</td>
</tr>
</tbody>
</table>

(1) Les valeurs sont exprimées pour l’Unité Fonctionnelle c'est-à-dire pour une surface de 0.672 m² et pour un an.
(2) Les valeurs sont exprimées pour 0.672 m² pour toute la durée de vie.
(3) Les valeurs sont exprimées pour 1 mL d’entrevoirs c'est-à-dire pour une surface de 0.560 m² et pour un an.
(4) Les valeurs sont exprimées pour 0.560 m² pour toute la durée de vie.
4 Contribution du produit à l’évaluation des risques sanitaires et de la qualité de vie à l’intérieur des bâtiments selon NF P 01-010 § 7

Contribution du produit	Paragraphe concerné	Expression (Valeur de mesures, calculs…)
A l’évaluation des risques sanitaires		
Qualité sanitaire des espaces intérieurs	§ 4.1.1	
Qualité sanitaire de l’eau	§ 4.1.2	
A la qualité de la vie		
Confort hygrothermique	§ 4.2.1	$R_a (C ; C_{TR}) : minimum 55 (-1 ; -6) dB
Confort acoustique	§ 4.2.2	$Ln , w : minimum 69 dB
Confort visuel	§ 4.2.3	
Confort olfactif	§ 4.2.4	

4.1 Informations utiles à l’évaluation des risques sanitaires (NF P 01-010 § 7.2)

4.1.1 Contribution à la qualité sanitaire des espaces intérieurs (NF P 01-010 § 7.2.1)

Du fait que l’entrevois est destiné à être posé entre la dalle et le faux plafond, ce chapitre concernant les espaces intérieurs est sans objet. Néanmoins, le polypropylène étant un matériau inerte ne favorisant pas le développement des bactéries, cet entrevois est particulièrement adapté aux atmosphères septiques et aseptiques ; il n’émet pas de fibres ni aucune autre substance.

4.1.2 Contribution à la qualité sanitaire de l’eau (NF P 01-010 § 7.2.2)

Cette rubrique est sans objet du fait que les ouvrages composé d’entrevois n’ont aucun rapport avec la qualité sanitaire de l’eau car la fonction d’un entrevois n’est pas de servir de contenant à l’eau potable, ce qui est l’objet de cette rubrique.

Par ailleurs, ils ne sont ni en contact avec les eaux de ruissellement, les eaux d’infiltration, la nappe phréatique ni encore avec les eaux de surface.
4.2 Contribution du produit à la qualité de vie à l’intérieur des bâtiments
(NF P 01-010 § 7.3)

4.2.1 Caractéristiques du produit participant à la création des conditions de confort hygrothermique dans le bâtiment (NF P 01-010 § 7.3.1)

L’entrevois lui-même est neutre vis-à-vis de cette préoccupation. C’est le plancher dans son ensemble selon ses caractéristiques propres, qui peut avoir un lien avec ce sujet notamment par l’inertie thermique qu’il apporte au sein d’un ouvrage permettant selon les conditions, une atténuation des variations de température diminuant ainsi le risque d’inconfort.

Ainsi, comme le montre le schéma ci-dessous, la pose d’une plaque isolante en polystyrène expansé (PSE) ou en polyuréthane (PU) entre la dalle flottante et l’entrevois, permet un gain en isolation.

![Diagramme d'isolation d'un entrevois](image)

- Dalle flottante
- Plaque isolante en PSE
- Dalle de compression
- Entrevois EMS
- Poutrelle en béton précontraint

4.2.2 Caractéristiques du produit participant à la création des conditions de confort acoustique dans le bâtiment (NF P 01-010 § 7.3.2)

Les entrevois permettent la réalisation de planchers présentant de très bonnes performances acoustiques en raison de la masse mise en œuvre (cf schéma ci-dessous).

![Diagramme de plancher acoustique](image)

Dalle flottante
Plaque isolante en PSE ou PU
Dalle de compression
Entrevois EMS
Poutrelle en béton précontraint
Laine minérale LM (ép. ≥ 45 mm)
Plaque de plâtre (ép. ≥ 13 mm)
A titre indicatif, l’indice d’affaiblissement acoustique $R_w (C ; C_{TR})$ et le niveau de pression du bruit de contact (L_n, w) d’un plancher à poutrelles et de l’entrevois Leader EMS pour plusieurs exemples de configurations sont présentés dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th>Plancher</th>
<th>Rupteur</th>
<th>Plafond</th>
<th>$R_w (C ; C_{TR})$ (dB)</th>
<th>L_n, w (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plancher à poutrelles avec entrevois EMS (hauteur 170mm)</td>
<td>non</td>
<td>BA 13 + plénum de 50 mm + L 100 mm périphérique</td>
<td>55 (-1 ; -6)</td>
<td>71</td>
</tr>
<tr>
<td>Plancher à poutrelles avec entrevois EMS (hauteur 170mm)</td>
<td>oui</td>
<td>BA 13 + plénum de 50 mm + L 100 mm périphérique</td>
<td>59 (-2 ; -8)</td>
<td>72</td>
</tr>
<tr>
<td>Plancher à poutrelles avec entrevois EMS (hauteur 170mm)</td>
<td>non</td>
<td>BA 13 + plénum de 80 mm + L 100 mm généralisé</td>
<td>58 (-1 ; -6)</td>
<td>69</td>
</tr>
</tbody>
</table>

Source : KP1

4.2.3 Caractéristiques du produit participant à la création des conditions de confort visuel dans le bâtiment (**NF P 01-010 § 7.3.3**)

Étant destiné à être mis entre un sous-plafond et une dalle, les entrevois ne jouent aucun rôle vis-à-vis du confort visuel.

4.2.4 Caractéristiques du produit participant à la création des conditions de confort olfactif dans le bâtiment (**NF P 01-010 § 7.3.4**)

Les entrevois ne dégagent aucune odeur et de plus ils sont destinés à être mis entre un sous-plafond et une dalle.
5 Autres contributions du produit notamment par rapport à des préoccupations d’écogestion du bâtiment, d’économie et de politique environnementale globale

5.1 Écogestion du bâtiment

5.1.1 Gestion de l’énergie

Le plancher complet a une influence sur la gestion énergétique du bâtiment. L’entrevous participe à l’inertie thermique apporté par ce dernier. En hiver et en mi-saison, il peut contribuer à la récupération et au stockage des apports internes et des apports solaires d’énergie.

L’entrevous EMS Leader permet la réalisation de planchers à isolation intégrée ou rapportée (dalle flottante) ainsi que des planchers compatibles avec un chauffage au sol.

5.1.2 Gestion de l’eau

Cette rubrique concerne la gestion de l’eau durant la phase d’utilisation du bâtiment (gestion des eaux pluviales, consommation d’eau potable, …). Un entrevois n’a aucune influence sur la gestion de l’eau durant cette phase.

5.1.3 Entretien et maintenance

Un entrevois ne nécessite ni entretien ni maintenance pendant sa vie en œuvre.

5.2 Préoccupation économique

Les gains décrits dans les paragraphes 4.2.1 et 5.1.1 participent à la diminution générale des impacts économique.

5.3 Politique environnementale globale

5.3.1 Ressources naturelles

L’emploi des déchets d’injection de l’entrevous Leader EMS pour réaliser des tympans contribue à économiser les ressources naturelles.
5.3.2 Émissions dans l’air et dans l’eau

Les usines de fabrication des entrevois réutilisant à plusieurs reprises la même eau pour alimenter le process, cela contribue à épargner les ressources.

5.3.3 Déchets

Il n’existe pas aujourd’hui en France de filière de recyclage des déchets de fin de vie des entrevois EMS Leader, la principale difficulté étant la séparation de l’entrevois du béton ayant été coulé.
6 Annexe : Caractérisation des données pour le calcul de l’Inventaire de Cycle de Vie (ICV)

6.1 Définition du système d’ACV (Analyse de Cycle de Vie)

Description des flux pris en compte dans le cycle de vie du produit.

6.1.1 Étapes et flux inclus

La modélisation du cycle de vie d’un entrevois a été réalisée dans le logiciel SimaPro. Conformément au chapitre 4.1 de la norme NF P 01-010, la modélisation retenue comporte les 5 étapes décrites ci-dessous :

Production : cette étape prend en compte la production et le transport des matières premières, la production des énergies consommées sur site, la fabrication étudiée et son conditionnement (palette en bois, film plastique, coiffé en carton, adhésif).

Transport : cette étape modélise le transport des entrevois du site de production aux chantiers, en passant éventuellement par un négociant. Il prend en compte également l’extraction et le raffinage du pétrole pour le carburant consommé lors du transport.

Mise en œuvre : lors de la mise en œuvre des entrevois, il n’y a pas de consommations quelconques autres que les entrevois eux-mêmes.

Vie en œuvre : l’utilisation des entrevois ne nécessite aucun entretien et n’occasionne aucun rejet. Cette étape n’a pas d’impact.

Fin de vie : la modélisation de la fin de vie intègre non seulement l’étape de mise en décharge des entrevois mais aussi le transport des déchets depuis leur lieu de vie en œuvre jusqu’à leur lieu de fin de vie.
6.1.2 Flux omis

La norme NF P01-010 permet d’omettre des frontières du système les flux suivants :
- l’éclairage, le chauffage et le nettoyage des ateliers
- le département administratif,
- le transport des employés,
- la fabrication de l’outil de production et des systèmes de transport (machines, camions, etc……).

6.1.3 Règle de délimitation des frontières

La norme NF P01-010 a fixé le seuil de coupure à 98% selon le paragraphe 4.5.1 de la norme.

Dans le cadre de cette déclaration, le pourcentage des flux remontés est 98 %.
Le flux non pris en compte dans les tableaux de résultats est la fabrication du colorant gris.

La raison de la non prise en compte de ce flux est qu’il ne représente que 2% de la masse total de tous les entrants et, il n’existe pas d’Inventaire de Cycle de Vie (ICV) disponible pour ce produit. Par ailleurs, le colorant gris ne contient pas de substances dangereuses d’après lecture de sa Fiche de Données de Sécurité.

6.2 Sources de données

6.2.1 Caractérisation des données principales

Fabrication et emballage

- Année : 2007
- Représentativité technologique : Les sites de production sont représentatifs de la technologie employée en Europe (procédé d’injection).
- Source : Les données de fabrication proviennent de deux sites de production et ont été collectées par le biais de questionnaires. Les émissions du process d’injection proviennent d’une moyenne des entreprises d’injection européenne. Par ailleurs, les Fiches de Données de Sécurités (FDS) ont été consultées.
Concernant l’emballage, les données proviennent de KP1.

Transport

- Année : 2007
- Représentativité géographique : Les distances d’acheminement calculés, sont représentative du transport sur des chantiers situés en France, acheminement tenant compte des différents scénarri possibles, à savoir acheminement directement du site de production au chantier via une filiale commerciale (usine ou dépôt) et/ou négociant en produits de construction.
- Source : KP1
Mise en œuvre
Aucun impact associé

Vie en œuvre
Aucun impact associé

Fin de vie
- Année : 2007
- Zone géographique : France. La totalité des déchets est stockée en décharge de classe III pour déchets inertes.
- Source : Base de données ECOINVENT®

6.2.2 Données énergétiques

Les PCI des combustibles et le modèle électrique sont issus de la base de données ECOINVENT® 1.3 associée au logiciel SIMAPRO® 7.1.4 utilisé pour le calcul de l’inventaire. Il est à noter que le modèle électrique est le mix énergétique français en 2006 qui tient compte de la proportion des différents modes de production.

6.2.3 Données non-ICV

Aucune utilisé.

6.3 Traçabilité

Les inventaires de cycle de vie ont été réalisés en 2007 et l’agrégation des données relève de calculs issus du logiciel SIMAPRO® 7.1.3.
Principales hypothèses

Transport :
Le schéma résume ci-dessous les différentes phases de transports, les données et les hypothèses qui ont été retenue.

![Diagramme des phases de transport]

- [1] 800 km par camion de 28 tonnes. Source : KP1
- [2] 854 km par camion de 32 tonnes. Source : KP1
- [3] 585 km par camion de 32 tonnes. Source : KP1, d’après des données livraisons (voir 6.2.1)